Georg Beckmann

Bureau for Mechanical and Energy Engineering, Vienna, Austria

Harvesting technologies for reeds in Austria

Reed as a Renewable Resource 2013; Greifswald

- 1. The Austrian R&D-Project ENEREED
- 2. State of the art harvesting technologies at the Lake Neusiedl
- 3. Experiences and performances of harvesting tests
- 4. Improvements and requirements for a new harvesting technology
- 5. Acknowledgements

The Austrian R&D-Project ENEREED

ENEREED: "Sustainable Energy Conversion from Reed Biomass", aims at the energetic utilization of the reed belt around the Lake Neusiedl

Other presentations of the Project ENEREED in the later afternoon:

- Jürgen Krail: Project overview
- Doris Rixrath: Live Cycle Assessment

My topics are:

- Description of the applied harvesting technologies
- Experiences and performances of harvesting tests to provide 250 t of reed to enable large scale combustion tests at a cement factory

3

Improvements and requirements for a new harvesting technology

The Lake Neusiedl

Figure 1: The Lake Neusiedl (google maps)

ENEREED - Sustainable Energy Conversion from Reed Biomass – RRR 2013, Greifswald

Potential for the utilization of reed

Table 1: Potential for the utilization of reed in Austria

Potential at the Lake Neusiedl, in Austria				
Area of the reed belt, Austria	18,000	ha		
Useable reed stock	84,000	t Reed		
Assumption of a 4-year harvesting				
turnover	21,000	t Reed/year		
Fuel oil equivalent	9,350	t Oil/year		
Equivalent of CO ₂ savings, rough				
estimation (credits of burning fuel oil)	29,000	t CO₂⁄year		

Technical data of the two considered harvesting machines

Table 2: Technical data of the two considered harvesting machines

Technical data:		Paul I	Sumo-Quaxi	
Туре		reaper-binder	reaper-baler	
Manufacturer		Erwin Sumalowitsch, Podersdorf		
Year of construction		~2000	2004	
Crew	men	5	1 2	
Weight empty / maximum	kg	4500 / 6500	9800 / 11500	
Maximum soil pressure	kg/cm²	0.10	0.12	
Overall length * width * height	т	6.80*3.00*2.85	9.43*3.10*3.67	
Power of Diesel-engine	kW	118	142	
Fuel consumption	litre/h	6.3	10.0	
Feed width of mower	т	2.85	2.85	
Shape of harvested reed		bundles	round bales	
Storage capacity = harvest per				
route	kg/route	1850	764	

"Paul I" harvester for young grown reed harvesting

Figure 2: "Paul I" harvester for young grown reed harvesting; harvesting on ice in February 2012

"Sumo-Quaxi" harvester for fully grown reed harvesting

Figure 3: "Sumo-Quaxi" harvester for fully grown reed harvesting, during the harvesting operation in March 2012

"Sumo-Quaxi" at the discharging place

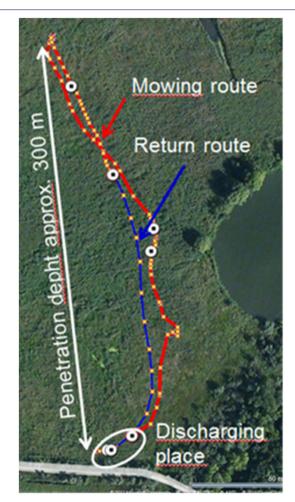


Figure 4: "Sumo-Quaxi" has reached the discharging place, 3 bales are dumped, the 4th bale is still in the bale press

ENEREED - Sustainable Energy Conversion from Reed Biomass – RRR 2013, Greifswald

GPS-monitored harvesting route

Harvesting route of the "Sumo-Quaxi":

- with a predominate mowing route
- a short return route
- resulting in a penetration depth of 300 m

Figure 5: GPS-monitored harvesting route of the "Sumo-Quaxi"

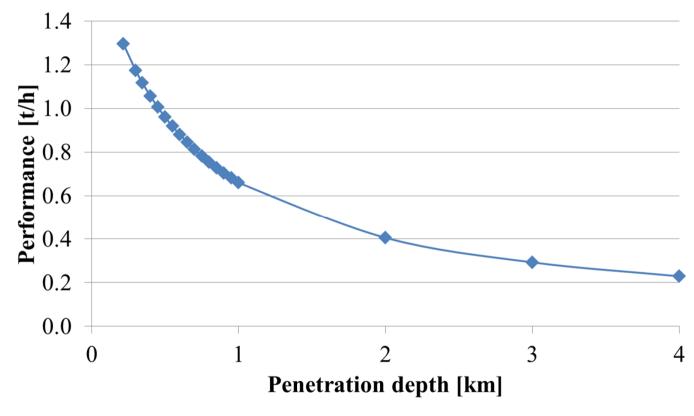

Performance data - harvesting machines

Table 3: Performance data of the harvesting machines

Performance data (mean values):		Paul I	Sumo-Quaxi	Measuring
Tests at Podersdorf, on March,, 2012		12th	13th,15th,16th	Method
Harvest per route	kg/route	1850	764	nal
Duration of total route	h/route	1,33	0,69	Conventiona
Hourly harvesting output (wet base)	t /h	1,39	1,11	nvei
Daily harvesting output (8h/d, wet base)	t /d	11,13	8,86	CO
Duration of mowing / discharge	h	1,00 / 0,05	0,55 / 0,041	
Distance of mowing / of total route	т	1180 / 2260	431 / 690	GPS
Speed, during mowing / without mowing	km/h	1,2 / 3,8	0,8 / 2,7 (+/-25/40 %)	G
Penetration depth (=Distance of route/2)	т	1130	345	
Feed width of mower (see: technical data)	т	2,85	2,85	
Mowing performance	ha/route	0,336	0,123	
Surface related yield (wet base)	t/ha	5,5	6,2	

Predicted harvesting output - "Sumo-Quaxi"

Predicted harvesting output Sumo Quaxi

Figure 6: Predicted harvesting output [t/h] of the "Sumo-Quaxi" as a function of the required penetration depth [km], (optimum: 1.3 t/h at 0.215 km)

Storage-relevant data

Table 4: Some storage-relevant data for different shapes of reed

Shape of the reed		Chipped	Round bales
Pressing process		cutting	wrapped
Size	т	<0.1	1,2 * 1,2
Volume	т ^з		1,357
Weight	kg		191
Density	kg/m³	120	140,8
Pile-ability		heaps, no piles	limitated
Formation of piles		no piles	staggered
Storing place		roofed	open air
Relative storage costs*	%	340 %	"100 %"

*) Hartmann 1996

Chipping and Transporting

Chipping, with commercially available chippers:

- up to 600 HP Diesel-engine power,
- up to 65 litre/h fuel consumption,
- up to 11 t/h reed throughput.

Transporting; with conventional trucks, with trailers:

- with 90 m³ containers,
- approximately 11 t of reed per container.

The chopping machine

Figure 7: The chipper, driven by a tractor via a transmission shaft, fills the top-open container of the truck; considerable development of dust (May 2012)

ENEREED - Sustainable Energy Conversion from Reed Biomass – RRR 2013, Greifswald

Skipping and discharging

Figure 8: Skipping and discharging the chipped reed at the storage bin of the cement factory

Possible improvements and requirement for a new harvesting machine

The given technologies are, in principle, feasible, but further *incremental* improvements are necessary to increase the output an the annual utilisation (the key factors for any economic achievement):

- an increase of mean velocities enhance output
- an larger feed width increases output, too
- an increase of bale density and capacity shortens the duration of the return route
- shuttles save the necessity of the return route
- beside harvesting operation, chipping and fuel consumption cause considerable costs.

Fundamental improvements, however, call for new harvesting designs and probably for new concepts. The Austrian company Schuch GmbH (activities: landscape preservation and gardening, mowing, chipping, transport) has contribute to create a new harvest concept.

Contact Research Partners

Dr. techn. Georg Beckmann

Bureau for Mechanical and Energy Engineering Anton Baumgartner Str. 44-B7-016, A-1230 Vienna / Austria Phone and Fax: +43 1 9230160 Mobile phone: +43 6991 9230160 E-mail: georg.beckmann@chello.at

Thank you for your kind attention!

The project is funded by the Austrian "Klima- und Energiefonds" and carried out within the research promotion scheme "NEUE ENERGIEN 2020".

